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O. Introduction

It is well known in the theory of elastic shells that a first order approximation

using the shell thickness as an expansion parameter leads to the membrane theory of

shells. The membrane equations have as solutions the generalized analytic functions,

These functions have been exhaustively studied by Ilya N. Vekua [6], [7] and his stu-

dents. R.P. Gilbert and J. Hile [3] introduced an extension of these systems to include

elliptic systems of 2n equations in the plane and named the solutions of these systems

generalized hyperanalytic functions.

It is shown in this paper that the next order approximation to the shell, which

permits, moreover, the introduction of bending, may h: described in terms of the gen-

eralized hyperanalytic functions. It is strongly suspected that the higher order approxi-

mations may also be described in terms of corresponding hypercomplex systems.

1. Notation and Formulation

In this work we follow the notation used by Dikmen [1], we view a shell as a

three dimensional body, which we try to reduce to two dimensional consideration by

introducing a suitable reference surface. A set of curvilinear coordinates

8',  i = 1,2, 3! are chosen so that a reference surface within the shell may be

represented by 8 = 0. For purposes of defining our notation let a be a surface em-

bedded in R which we represent in the form r = r 8 !. The vectors

Br
a~: = r~ = are the base vectors. The first fundamental form of the surface is

a8

given by a~p d8 d8i where the a~p . = a~ . ap are the covariant components of the
metric tensor. If the A > are the cofactors of the a~p we define the contravariant
metric tensor as a <: = A ~ I a where a is the determinant of a~. The
second fundamental form of the surface is defined through
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2. Derivation of Equations for n = 2:

N g � bf N + pf =0,  P=lg!

N ~~ + b~ N >+ pP = 0,
�.1.!

�.2!

M~ + b~ M<+ pP =m3

As is remarked in Dikmen I'1] if the coordinate system happens to be a system

of normal coordinates in the elastic configuration the angular momentum equations

take on the particularly simple form

N~ x a~+ m x a~ � bj M x a�= 0, �.3!

hf' x a + � m x a � b ~ M x a�= 01 a
Q 2 2 3 0 2 � 4!

If we ignore the effect of the terms m and M in equations �,4! which is similar
2 2

to the approach used in membrane theory we have that M< = MI and N~ = m

We will not need these assumptions until lat~., From equation �,1a! we have

Nll +N21 Nlt +N21 +11 Nil+I 1 N21+ l~2Nll

~ I 2 N2t ~i l Nll ~l t y21~1 l N12~ I l yq

� 5!

Following Dikmen [1] we try to introduce bending into our model by retaining

only those quantities for n c 2. Dropping the index 1, in component form these

become
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v1, = ~a» N,21!, v2. � � ~a11N,22,

Then the etluations of linear momentum balance

N~i~t � b' N~+pf =0,

�.12!

N P2 � b 2 N~ + pf = 0,
become

1 1 1
1,1 + v tg +  ~a11! 2 l42 �  ~a22! 1 v2

Va 22

Lpf + btta m i ~a11,
I' ~ 11

�.13!

1

~a»an
1 12,1 + v2,2 �   i<11!,z ~ <1 +  ~a22!,1

~a22

=  pf + b22a m

m =0, 1V =0, M =0 �.15!

We now turn to computing the terms in �.1b!. First one has

N =N'1 +N + I ' +112!N' +  I ' + I 	V92

+ I 1V" + I 3 N' +I 3 N '+ I 3 1V22ll ZI 12 22 �.16!

In order to simplify our problem we assume that T~ = T = 0 on the faces

of the shell 0+ and Q, i.e. there is no shearing but rather loading on these surfaces.

Now if we seek solutions that have T~ = T~ = 0 throughout the shell-body then one

has t'1] pg. 145









0

0 0 0

0 0 0

0 � P»Pzz 0

�.32!

210 1 liP22
21+ I tl 522!.2! 2l 721

0 0
0 0

�.33!

ID. Reduction to Normal Form

In this section we shall show that the system �.31! �.32! �.33! may be put

into the generalized hyperanalytic form [1], [3], [5], [8]. To this end we consider just

the principal part of �.31!, namely lu, + Au~ = g. The matrix  I � L4! has the

two purely imaginary eigenvalues k =+ i which are double roots of the

characteristic equation, Let us designate these two roots by +ib x,y! where b > 0.

Then the Jordan cannonical form for A is given by

�.1!

and J = Q 'AQ, where Q = [q!, qg, q3 'q4] ~ Here q> is the eigenvector

corresponding to X,> � � ib and q> is the generalized eigenvectors which satisfies

 A � ib!qz = q~. Moreover q~ is the eigenvector corresponding to X> � � � ib and q4

the associated generalized eigenvector. It follows that Q is given by

� Pi»Pzz
0

0

ib 1
0 ib

a 0
0 0

0 -�/yg!! g
0

21! 1 »922 Q12+�/ f21!,2
+12+ I » 022!,2 21 f21

0 0

0 0
-ib 1

0 -ib
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�.2!

In �.2! the coefficients a, b, and c are defined to be positive functions of »,y

given below

0' Q, a = 1/'y2$ > Q, c = p$[/$22 0 Q �.3!

Q is given by

2 -2ia lb 0 ia 5/b
0 0 -ib5 -a5
2 Zia lb 0 -ia &b
0 0 ib5 -a5

�.4!

Introducing the new unknowns tm: = Q V our differential equation �.31! takes on the

IV �+JV +RV=S �.5!
where

R =Q 'Q +Q tAQ�+Q iCQ, S:=Q 'F �,6!

By using the complex derivative

a 1 a .a a 1 a .a
� l � + $�a.=2 a» y ' az=2 a» ay

�.5! may be written as

-I
ie 1-b ie

� I+ � V, +PV =t
I+b 1+b 1+b

V +

with e the nilpotent matrix

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

�.8!

and P; =  I � � ! R, etc.. If we consider the principal part of �.8! it is known
ie

I+b

1 0
ib la � 1/a

0 2i/b 5
0 -2/a 5

1 0
ib la � 1/a

0 -2i /b5
0 -2la 5
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w ~ + � w «+ terms without derivatives

Hence by taking the hypercomplex derivative 3 to be defined as

8: = � + � e, e2=0,a

~g 2 Bz

and the hype:rcomplex unknown as

w w!+ewe

the principal part becomes Bw, and the system takes the form

2 2

Bw+ $ $e  Apw+Bgw!+c=0
k=1 j=l

� 14!

c: = c t + ec~, If b constant then a Beltrarni transformation must be used in addi-

tion to normalize the principal part. When b may be effectively approximated by

polynomials there are efficient r. =thods for analytically constructing this mapping. An

exhaustive study of the boundary value problems associated with �.14! is presented in

the books by Wendland [8] and Gilbert-Buchanan [2].
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