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0. Introduction

It is well known in the theory of elastic shells that a first order approximation
using the shell thickness as an expansion parameter leads to the membrane theory of
shells. The membrane equatons have as solutions the generalized analytic functions.
These functions have been exhaustively studied by Ilya N. Vekua [6], [7] and his stu-
dents. R.P. Gilbert and J. Hile [3] introduced an extension of these systems to include
elliptic systems of 2rn equations in the plane and named the solutions of these systems

generalized hyperanalytic functions.

It is shown in this paper that the next order approximation to the shell, which
permits, moreover, the introduction of bending, may be described in terms of the gen-
eralized hyperanalytic functions. It is strongly suspected that the higher order approxi-

mations may also be described in terms of corresponding hypercomplex systems.

1. Notation and Formulation

In this work we follow the notation used by Dikmen [1], we view a shell as a
three dimensional body, which we try to reduce to two dimensional consideration by
introducing a suitable reference surface. A set of curvilinear coordinates
8 ., =1,2,3) are chosen so that a reference surface within the shell may be
represented by 83 = 0. For purposes of defining our notation let © be a surface em-

bedded in R> which we represent in the form r=r(@%. The vectors

or

By i =Ty = 6% are the base vectors. The first fundamental form of the surface is

given by a8 d8% d 6" where the @qp ' =2, - ag are the covariant components of the
metric tensor. If the A®P are the cofactors of the aqg We define the contravariant
metric tensor as a®® : = A%® /4 where a is the determinant of dqp. The

second fundamental form of the surface is defined through



a; x a,

bapd8°d6P = ay-a, 3d 0946 =— dr-da;, with a; = The Christoffel sym-

a; xagl’

(a +a - dq.g+). and covariant
oy.p Bra aB.y

bols are given as wusual by T, : =%

differentiation is defined by

Taly:=Tay—THTy. (1.1)

The position vector of a generic point on the shell at time ¢ is given by

x=x(6%,%,r) where (8!, 0% e Q is a point on the reference surface and Eg[0,h],

in particular x(8%, 0, ) = r(8,, 7). The methods of Dikmen [1] and Vekua [6] use the

shell thickness variable & to expand x(8%, & , ¢). (Vekua expands in terms of Legen-
dre polynomials £, (§) and Dikmen uses powers of &.)

(6%, &, 1) = v(8%, 1) + 3 ERd(gk, 1) (1.2)

n=1
In terms of the reference surface (€ =0) we now express a position vector
which is near the reference surface as x =r + & a;. In terms of the three dimen-
sional basis vectors g we may compute the stress vector t on a surface as

T R; g ; =t, where T is the Cauchy stress tensor, and fi is the unit normal to the

surface, and #A; a covariant component, ie. A=4; g" = A’g". The equations of
motion take the form
Ti+p"g 2 f " =p"g" 24", (1.3)
g’ x T =0 (1.4)
where the vectors T are defined by
T :=g""2T0g, 8" =deg;) (1.5)

and f" is the body force acting on each unit of mass. The moments of (1.3) are
investigated by multiplying both sides by &" and integrating over the shell thickness

from & = a(8%) to & = H(8%). One obtains [1]



ME+pim-=0, (1.6)
with
N .
Mcalﬂ.:=£1'ﬂ§ﬂd§ (1.7)
n
h
ma'?:=nf T g*1dg (1.8)
n 0
h
plal:=[p'f g R B dE + (E"(- b T + TV,
n 0
~Erag T+ T, , (1.9)
and
T=/~(kv 3 ) . .
N n (uv+1‘:"‘luﬁl?) (1.10)

By introducing components, ie. N*=N%a; ,M=M %a, ,m:=m' a; etc., where
n n n n
we denote M ¢ by N%. We may rewrite (1.3), with n=0, in the form
o

N -b8 NB4pfP =0, (L11)
_ (n=1,2.)
NE —bogN®® +pff=0. (1.12)

The angular momentum equations (1.10), moreover, take the form [ ] pg. 61

B
MB-of MBapl =mb, (1.13)
L n n
(n=012 ---)
-8
Mig+tbgM®Brpl =m?. (1.14)

It is well known [1], [6] th.: if one can ignore all of the above quantities for n 2 1
one obtains the so-called membrane theory of shells and that these equations may be

treated by a reduction to the generalized analytic function theory. In the next section

—ﬂ
we shall consider the situation where the M *® . m 8 | i . €tc. may be ignored for all
n n

n 2 2. This permits one to introduce bending into our analysis. We shall show that in
this instance the system ot equanons may be reduced to the so-called generalized

kyperanalyiic system [6], [7].



2, Derivation of Equations for n = 2:

Following Dikmen [1] we oy to introduce bending into our model by retaining

only those quantities for n < 2. Dropping the index 1, in component form these

become
N -bE NB+pfP=0, (B=1,2)
NS +beg N® +pf? =0,
Q2.0
MB -bpB M3 4+pP=m? , B=12)
and
(2.2}

M +bog M™ +pl° =m? .

As is remarked in Dikmen {1] if the coordinate system happens to be a system
of normal coordinates in the elastic configuration the angular momentum equations

take on the particularly simple form

Nixa;+mxa3-bl M*xa,=0, (2.3)
and

1
M“xaa+3r;1xa3—b;’l\2/l°‘xa7=0. (2.4)

If we ignore the effect of the terms T and Dé[ % in equations (2.4) which is similar

to the approach used in membrane theory we have that M™ = MB® apd N = p©,

We will not need these assumptions until late.. From equation (2.1a) we have

NI +NH =NIt+ N3 + T N+ T) N 4 T MY

+ AN+ TN TL N T NIZo T, N22
(2.5)
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If the lines of curvature are used as curves on the reference coordinates then in physi-

cal components we have

1

Na5=—a—-;;.~<u'ﬂ> , o, B
N8 g

(2.6)

and in particular

[ 1 1 [
11 = [NapN., ]
'Jm Nett> 1 auvap ST

Nl =

+ _'I“"'"] [@N< 1.1>] ,

211V 22 |4

NG = amlla_[ﬁmzbl [aml_] ['\{;N-:Z.l:']- @7

and

Tap=Tfa = \l:: [ am]'ﬂ » . (2.8)

After some computation one obtains

v = o [ (v, s,

Nay | vanan

+(\Jall)2N<1.2>_(@).l N<2.2>- (2.9)

Using similar steps one also arrives at

N®2 = 1 [[\/_N<12>] [ﬁN<22>].2]]

Vag \/anazz

- [\fa_u:JM s+ [Vaz), Moz H (2.10)

Let us now introduce the new unknowns



-7
upr=~NapNeyyy . Ug:=vVapN s, (2.11)

vii=NanNegrs » vai=va Negas .
Then the equations of linear momentum balance

N bl NBipfl=0,

and
(2.12)
NZ -2 N®+pfi=0,
become
—t Uy +via+Hay), 1 “2—(\1022)1—11’2
Naan | T Nap " Nay,
= [pfl"'bnﬂ”ml] Naj; ., 2.13)
and

Vajan vay vay
= (pf % + bpa®mYH Nay, .

1 1 1
{"2.1 + Va2~ (Way), uy + Vap) — ‘-’1‘

In order to simplify our problem we assume that T =T3% = ( on the faces
of the shell Q" and Q7, i.e. there is no shearing but rather loading on these surfaces.
Now if we seek solutions that have 7% = 732 = 0 throughout the shell-body then one
has {1] pg. 145

m*=0 , 6 N®=0 ,6 MB=0. (2.15)
We now tumn to computing the terms in (2.1b). First one has

NS =NP +NP + ([T} +TLND + (T4 + TENE

+TH N +TH N2 +TEH NN ) N2 (2.16)



-8.

On the reference surface § =0 we have 1"35 = 1";5 = byp; hence, (2.12) becomes

NG =NP +NZ2 + T +THNY + @}, + THNZB

e (Vam M)+ =2 (Vo o
N apn N ,
011'\[; <l1> an\/‘? 11«22 >
which upon using (2.11) we obtain for (2.1b)
by by
a—(N<11>)+ —2'(N<2,z>)+ pf?=0, (2.17)
il

In terms of the unknowns u,, 44, vy, v, equation (2.17) becomes

by bn 1 =3
Uy + Vo == g a . (2.18)
ﬁ 1 @ 2 2 11622 pf

Rewniting equations (2.2a) over in terms of the physical coordinates and using

similar methods to those for the equations (2.1) we obtain

M = — { L (V@ M 11 ) + (N Mg )

Vay |Vayapy
+ a2 Mo - Nagy, M<22,.]}, (2.19)
and
1 1
M = [Wazz Mcizs) +(\J'011M<22>).2]
‘fﬂzz Vauazz
= (Na)a Moy, + Nap) M, 21>]}» (2.20)
with M_ga., =M, Ba »- Again introducing new unknowns, namely

iy = ~Ja?.'2Mr<11> , Uy = \Ila22M<12>-
Vi=Nay Moy, va=Nag Mo,

the equations (2.2a) become



1 Wap),  Gan)

— —
31180 Uz +Vvig+ _azz iy ﬂ Vap=-— \’au p[ , (2.21)

1 (a1, .\ Nap),

L
—_—tly g+ Vaq u vy r=—+a {“, (2.22)
Vanan | 2772 g B G, 1P

and

\)au g = \szz L (2.23)

At this point we have eight unknowns and only six equations. One equation is

obtained from (2.2b) and another form
N _ ybe = by MP - b2 M (2.24)

which comes from linearizing the angular momentum equations [1] pg. 139. From

(2.2b) we get
byMM + b M2+ by M2 + booMP = md - ol

which becomes, in terms of the new unknowns,

bll bn 3
+ = @ anm? - i) 2.25
[ r.._a“ u3 r_a V4] audzz( p ) ( )

and from (2.24) we have

1 bl -b3 bl -b3
—\/;"""[‘\Jﬂu Uz"‘\]dzzvl]= Uy = Vi .
q11922 Vaz vay)
Coilecting our equations we arrive at the following system
Uir ¥ Vig+ Quiy o vy = £y, (2.27a)
Ugy + Vo= Oy + 0V =f3, (2.27b)

iy + LW + Qpalty — Uy Vy =f3 . (2.270)
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Ua) + Ve — Oqty + vy =fy,
where the unknowns are connected by the relatons
Buuy + Bove =gy,
ug = Yv3 =0,
Brus + Puvs=2g,,

Uy~ Yy =duy, .
The nonhomogeneous terms above are given by

fri=ayNay Y, k=12

fraai==ayay F’l’_Jt , (k=12)

gz=Vayjay (m? - PF’) .

The system (2.27) (2.28) may be rewritten in the form

!u.1+Al.l'2+Bu+F s u:=(u1,u2,\u3.u4)‘

(2.27d)

(2.28a)

(2.28b)

(2.28¢)

(2.28d)

(2.29)

(2.30)

(2.31)

where A and B are the 4x4 matrices defined below and / is the identity, namely



0 Iy 0 =dryy
= BuBy O 0 0
A:=]0 0 0 o |, (2.32)
0 0 0 1y
| 0 0 -Pubn O |
and
o1B11/Bn @+ 1y, 0 ~8M21)2
B:= ~(0+(PB11/B)2) Gy 0 —0, 8y
' 0 0 P1i/Baz @z Hliva),
0 0 o+ (B11/Ba2) 2 21/
(2.33)

NI Reduction to Normal Form

In this section we shall show that the system (2.31) (2.32) (2.33) may be put
into the generalized hyperanalytic form [1], {3], {5], [8]. To this end we consider just
the principal part of (2.31), namely fu, + Auy, =g. The matrix (/ —AA) has the

two purely imaginary eigenvalues A =t \, |3?I.321Yl which are double roots of the
21

characterisic equation. Let us designate these two roots by +ib(x,y) where & > 0.

Then the Jordan cannonical form for A is given by

ib 1 0 0
J=|0 b 0 0
=0 0 -ib 1
0O 0 0 -ib

’ (3.1)

and J =Q7'AQ, where Q =(q;,4;.43,9q,). Here q, is the eigenvector
corresponding to A, =ib and q, is the generalized eigenvectors which satisfies
(A—ib)q; = q;. Moreover q; is the eigenvector corresponding to A, =—ib and qq

the associated generalized eigenvector. It follows that @ is given by
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1 0 1 0
_{ibia -l/a ibla -l/a
=170 2ims 0 -2ibd 3.2)
0 ~2/ad 0 =2/ad

In (3.2) the coefficients a, b, and ¢ are defined to be positive functions of x.y

,f Pu
b= >0, a=Wy >0, ¢c =P /Bp>0 . 3.3
B 2 11/P22

Q7! is given by

given below

. 2 =2iaib 0 5 ia 5!81‘:

a_Lt |0 0 —ib -a

C =712 zan 0 -iadib | - (3.4)
0 0 ibd -ad

Introducing the new unknowns u := QV our differential equation (2.31) takes on the

form

IV +JV,+RV=S , (3.5)
where

R:=Q7'0 ,+07'4Q,+07'CQ , S :=Q7'F . (3.6)

By using the complex derivative

(3.5) may be written as

-1
fe 1-b ie
e lr-< | iy cpvay
z [ l+b] [1+b +1+b]‘+ t

with ¢ the nilpotent matrix

o
|

(3.8)

Qoo C
fon o N O
OO —O
S~ OO0

and P :=({ - --115-5)'1:?, etc.. If we consider the principal part of (3.8) it is known
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(See Gilbert Buchanan (2], or Wendland [8] for example.) that using a solution of the
Beltrami equation

1-b
Wy + T Wy =0 (39)
as the new independent complex variable permits us to put the first two equations of

(3.7) into hypercompiex form. The equation

1+6

1-b

Wz_'l'

=0
provides us with the proper Beltrami transform for the second pair of equations.

A computationally direct approach for finding the normal form arises by using

the eigenvalues of the mansposed matrix A [4]. The eigenvalues are the same +ib.

Corresponding to +ib we have the eigenvector Y'¥ : ={0,0,1,—ib/c] and the gen-
eralized eigenvector

Y®* 1= (2i/b8, 28, 2ib, 1c] .
We introduce the new complex, unknowns w; , w, then as

w1:=y(1}-u and w2:=y(2)—u .

The components of u may then be found from the martrix equation

- 55{;2 yooo- ig8f4 . -8n, ibéSM Wi
—Gw= | D4, ¥4, icddb, B4} V2

u=Gw:= 12 0 12 0 7, (3.1
icf2b 0 - ici2b 0 7,

The system (2.31) upon multiplying on the right with the row vector Y(I¥  becomes
Wiy +ibw, + YYBGw +c; =0, cy:=YF

or

(1-+-b)w1_z_ + (I—b)wl‘z +DIW1 + Dsz + Eﬂ:\?] + Ezﬁz +C = 0 (312)
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The system (2.32) upon multiplying on the right with the row vector Y®¥ becomes
(140w, 5 + (1=b)wa, + iwy,~iw ;+Y¥BGW + ¢, =0
Since w,; may be removed using (3.12), this takes on the form
(40w, s+ (1=DIwo  +iw |, +D 3w (+D W +E ;W 1+E Wy +¢,=0 . (3.13)
The special case where b =sconstant, which w.o.log. we take to the 1, is of interest.
Here (3.12), (3.13) assume the hyperanalytic principal part, namely
w, y + terms without derivatives ,

and

i . _—
Woy + 5 Wi + terms without derivatives .

Hence by taking the hypercomplex derivative d to be defined as

d

9, 9 2.
97

-é-e—,e-o,

d:=
dz
and the hypercomplex unknown as

w=w;+ews |,

the principal part becomes dw, and the system takes the form
2 2 A
ow + Z E € 'l(Atij-kBkJ\_v"J) +¢c=0 ' (314)
k=l j=1

€ :=¢y+ec, If b #constant then a Belrami transformation must be used in addi-
tion to normalize the principal part. When b may be effectively approximated by
polynomials there are efficient 1. sthods for analytically constructing this mapping. An
exhaustive study of the boundary value problems associated with (3.14) is presented in
the books by Wendland [8] and Gilbert-Buchanan {2].
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